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The functional integral representation for the generating functional of the t-J-V 
model is obtained. In the case close to half-filling this functional integral 
representation reduces the conventional Hamiltonian of the t-J-V model to the 
Hamiltonian of the system containing holes and spins 1/2 at each lattice size. 
This effective Hamiltonian coincides with that obtained by one of the authors 
by a different method. This Hamiltonian and its dynamical variables can be 
used for a description of different magnetic phases of the t-J-V model. 
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1. I N T R O D U C T I O N  

The p rob l em of the theore t ica l  descr ip t ion  of h igh- tempera tu re  super-  
conduc t iv i ty  ( H T S C )  that  a rose  some years  ago is still open. (1'2~ The t-J 
H u b b a r d  mode l  of s t rongly  cor re la ted  electrons (3'4) is one of  the most  
p o p u l a r  models  for the exp lana t ion  of HTSC.  This mode l  reflects correct ly  
some proper t ies  of H T S C  compounds :  the phase  d iagram,  the close 
connec t ion  of  the magne t ic  and  t r anspo r t  proper t ies ,  etc. The  H a m i l t o n i a n  
of  the t-J-V mode l  can be expressed in terms of the H u b b a r d  opera tors ,  
which exclude doub le  occupancy ,  X~b= la, n>(n ,  b[, where n is the lat t ice 
site and  la, n~ = IO, n ) ,  I~, n ) ,  I],, n ) :  

HtJv = 2 [ t n m X ~ n ' ~ 1 6 3  [AcrX~na 

/ ~  =/~ -- ow o, T ~  # 

i Institute of Semiconductor Physics, AN, 630090, Novosibirsk, Russia. 
2 Institute of Nuclear Physics, AN, 630090, Novosibirsk, Russia. 

231 

0022~715/92/1000-0231506.50/0 '9  1992 Plenum Publishing Corporation 



232 Belinicher and Chertkov 

where Nn = X2 T + X~ + is the operator of the electron number; S is the spin 
operator, Snx = ( X  T+ + X~*)/2, S.y = (X~ + - X~T)/2i, S.~ = ( X  T~ - X~+)/2; 

=_+1/2, T, + is the spin projection; t .m= tin. is the electron hopping 
integral from lattice site n to lattice site m; Jnm is the spin exchange 
integral; V~m describes the Coulomb interaction of electrons on different 
lattice si tes; /~ is the chemical potential depending on the spin projection 
~; Wo is the precession frequency of the electron spin in an external 
magnetic field; and T is a temperature which is supposed to be much less 
than the usual chemical potential/~. This Hamiltonian follows (~'2) from the 
usual Hubbard Hamiltonian in the limit u >> t (where u is the constant of 
Coulomb repulsion on a lattice site at a filling n close to one electron per 
lattice site, 0 < 1 -- n -- p ~ 1. (4,5) In that case Jnm = 8(trim)2~ u" 

Belinicher (6) obtained the following representation for the Hubbard 
operators X ~b in terms of Fermi hole operators h+  and hn~ and local 
spins s:  

X ~ 1 7 6  X~~ - ~ , h ~ ,  

N h = x T T  + x + + = I - - N ,  X ~ 1 7 6  S = s + ( 1 / 2 ) ( h + 6 h )  (2) 

(o lo) 
r= --1 

This representation makes it possible to reduce the Hamiltonian (1), HtJv, 
to the Hamiltonian of the Fermi hole operators and spins 1/2, 

H t J v = H o + H i n t ,  Ho= 2 # ~h +#hn~ + Z Sz 
n e t  n 

Hint = ~ [ t . , . h + ( - 1 / 2 + ( S n 6 ) - ( h ~ + h . ) ) + � 8 9  (3) 
n ~ m  

_]_ �89  _]_ 1 + 1 + ~(hn 6hn))(s,n + 5(hmghm))] 

The representation (2) and the effective Hamiltonian (3) were 
obtained in the framework of the Wick theorem for Hubbard operators. 
The representation (2) and the Hamiltonian (3) do not represent direct 
operator identities. Some isomorphism of the form A -~ VA V -  1 must exist 
which transforms the relation (2) and (3) into identities. In this point this 
representation differs from known slave boson representations. (7 9) In the 
present form the Hamiltonian (3) can be used for the calculation of the 
Green function of the Hubbard operators in the framework of the tempera- 
ture diagram technique. Such a calculation was performed for the simplest 
magnetic states, ferromagnetic, paramagnetic, and antiferromagnetic, in 
ref. 6 and the properties of the hole transport and the hole interaction 
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were determined on the basis of two small parameters: the hole number per 
lattice site p ~ 1 and the inverse number of neighbors 1/z ~ 1. 

But it is well known that superconductivity arises in the nontrivial 
state of the paramagnetic spin liquid and it is not obvious that the 
Hamiltonian (3) obtained in the framework of the perturbation theory can 
be applied to the nontrivial magnetic state, which must be investigated on 
the basis of some variational approach. (1~ 

The reason for doubt concerning the validity of the representation (2) 
is based on the example of the Heisenberg model, which was studied with 
the functional integral method by Kolokolov and Podivilov. (n'12) They 
showed that the spin operator representation (13) 

Sz=a+a+O, s =a, s +=-a+(a+a+2qb) (4) 

where ~b is a random field with given statistical properties similar to the 
representation (2), is not precise and contains some corrections. The sub- 
stitution (2) and Hamiltonian (3) are Hermitian. The latter does not allow 
one to examine (3) as a Hamiltonian of some correct quantum problem. 
But ref. 6 made the assumption that the Hamiltonian (3) is defined only for 
the calculation of various matrix elements. This assumption requires proof. 

In the present paper we shall construct the functional integral 
representation for the generating functional of the Hubbard operator 
temperature Green functions for the Hamiltonian (1) t-J-V model of the 
strongly correlated electron system (Section 2). We shall show that the 
effective Hamiltonian (3) is the correct Hamiltonian for a filling of close to 
one electron per lattice site that is actual for HTSC compounds (Section 3). 
The functional integral method allows one to solve the problem of the 
calculation of matrix elements with respect to the Hamiltonian (3) in the 
case of a filling of close to one. It is possible to suggest a Hermitian variant 
of the substitution (3) and the Hamiltonian (4) (Section 4). We believe that 
the Hamiltonian (3) has some advantage in comparison with the usual t-J 
model (3'4) because it does not contain any constraint on double occupancy 
and can be used for the variational calculation of nontrivial magnetic 
states. 

2. F U N C T I O N A L  I N T E G R A L  R E P R E S E N T A T I O N  

The generating functional for the Hubbard temperature Green 
function may be represented in the form 

Z(h)= Tr (T~ (exp (-[3HtJv + f~ hab dr + flF))) (5) 
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where fl is the inverse temperature; T~ means the ordering product over 
temperature for time r;  hat'(T) represents eight external fields conjugated to 
eight Hubbard operators X ~b excluding X~176  1 - N ;  the external fields 
conjugate to X ~ X ~~ are Grassmann variables; F is the free energy; and 
Z(0) = 1. Using the Hubbard-Stratanovich identity, (14"11) one can represent 
the generating functional (5) in the form 

f a y N Z(h) = H Dn~ Dn,, Dn. 
n 

x exp �89 (n~A~ ~t~mn ~--n~.B;1J~m~--nNg.m~nN)& 

X Tr (T .  (exp { f /  [~.(z)X:+~.(z)X~,+i'cN]dT})) (6) 

where n~'"= (n ~ n *~ n ~ n ~~ are the Grassmann fields conjugate to the 
corresponding Hubbard Fermi operators; n~'~= (rd s, n+T, n ~) are the com- 
plex fields conjugate to the spin Hubbard Bose operators; n N is conjugate 
to N; ~'~=na-t-h ~ for a=Oa, aO, TI, .L~; ~cz=n~+h~-wo; ~N=nN.+ 
hN+~. The numerical matrices A~., B~v 
(1) have the form 

as follow from the Hamiltonian 

(0101),_10 0 1/ 1 t 
A ~ =  0 0 0 B~v=~ 0 (7) 

0 0 - 1  0 

~N Let us notice that the integration over variables n T+, n ST, n z, can be 
understood as the integration over the surface in the complex space defined 
by the condition 

rc~t(z) = --(n~T(z)) *, Re(nZ(z)) = Re(nU(z)) = 0 (8) 

Correspondingly, the integration over Grassmann variables 0. ~o n n , n. can be 
understood as an integration over the four-dimensional Grassmann 
manifold determined by the condition 

n~ = -(n~~ * (9) 

The problem of the determination of the explicit form of the generating 
functional (6) is reduced to the determination of the T-ordered exponent 

A(Q= TT(f~ nc(~) XC + n~ df (10) 
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where c = 0 a ,  a0, T$, ~,r, z, n and the quantity n(z) is introduced for 
convenience. The operator exponent A(z) satisfies the obvious equation 

A(z) = (nc(z) X c + n~ A(z) (11) 

with the initial condition A(0)= 1. We are not able to solve Eq. (11) when 
the conditions (8) and (9) are fulfilled. However, following the method of 
ref. 11, we can deform the surface (8), (9) in a special manner and find the 
operator A(r). To this end, we shall use the ansatz 

A(~)  = B + ( t )  B~  ~ - ( ~ ) E s + ( o ) ]  1 

B + (v) = exp[(p~~ X T~ + ~o*~ X ~~ + q~T~(z) X $z ] 
(12) 

B~ = exp [r X Tt + q~+(~) X ~+ ] 

B (z) = exp[~o~ X ~ + q~~ X ~ + q~+~(z) X sT] 

In the formulas (10)-(12) and below the index of the lattice site m is 
omitted for the sake of simplicity. The expression (12) for A(T) satisfies 
the initial condition A(0)= 1. After differentiation with respect to z and 
representation of the result in the form (11), we get the system of equations 
connecting no(z) and ~o(z): 

not = 0ol, no, = 0o, 

(13) 

~z _= ~cT~ _ ~++ = ~,~ + 2~,+~,~+ + ~,~or _ ~So~,o+ 

~N_=~I(~ + ~++)= ~,N+ �89 

~0 = _~,~0~0~ 

where the new field variables ~ are expressed in terms of the initial 
variables q~ in the following way: 

~oT = (0o~ _ ~bO+~oli) exp( - ~p~T) 

r = r exp( -- q~+~) -- (~pOT _ ~pO~q~+T } q~T~ exp(_ ~ptT) 

(~4) 
~+T = ~blT exp(-- ~pz), q~---- q~T~ -- ~0 ~+ 
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The dependence of n o on q~ represented separately in (13) can be 
considered as a definition. Performing the functional change of variables 
(13), one can calculate the exponent explicitly and obtain an explicit 
functional representation for the generating functional Z(h). 

After the change of variables (13) it is natural to deform the initial 
surface of integration (8), (9) into the surface 

r = _ (~+T(~) ) , ,  Re(r = Re(~0N(~)) = 0 

r = _ ( r  (15) 

Notice that after such a deformation the conditions (8), (9) for nT*(~), 
n+T(~), n~ n~~ are not valid. For the correctness of such a deforma- 
tion the density of the generating functional must be regular with respect 
to the variables of the integration and the integral must exist for every 
surface of the integration in the process of deformation. The last condition 
is essential for the numerical variables n~t(~), n+T(~) because an integral 
over a finite number of Grassmann variables always exists. The discussion 
of the convergence of the integral over the variables n*+(z), n+~(~) can be 
performed in a manner similar to ref. 11. 

The substitution of variables (13) contains the time derivatives in the 
right side because it is necessary to fix the initial or boundary conditions. 
For complex ~ ( ~ )  the standard boundary condition ~( f l )=~T~(O)  
makes the transformation nonreversible. We shall use the initial condition 
for the ~r~(z),~12~ 

~9~(0) = 0 (16) 

For the Grassmann variables ~oo(~) one can use the standard antiperiodic 
boundary condition 

~ o ( 0 ) =  _~o( f l )  (17) 

When we perform the substitution of variables in the generating functional 
(6) we must calculate the Jacobian or more precisely the Berezinian of the 
transformation 

Dn ~~ Dn T+ Dn sT Dn: Dn N = Ber[J(~)]  DO ~~ DO ~ D~9 tT D~9: D@ N (18) 

where the matrix J(~t) may be represented in the block form 

(sa  J~ 
J-- =\Skb jk,}; a, b = 1"0, ~0; k , l = ~ + , + ~ , z , N  (19) 
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here jab is the Fermi part of the J matrix; jkr is the Bose part; and jar, j ~  
are the mixed parts of the J matrix. When the derivatives over the 
Grassmann variables in (19) are computed they are taken as the right 
derivatives. 

The Berezinian of the J matrix is calculated according to the following 
rule~): 

Ber [J]  = Det [ J  k' - j ~ ( j a b )  - ~ jb ,]  (Det [jab ] ) , (20) 

The explicit form of the Berezinian (20) depends on the method of 
regularization of the time derivatives in (13). Because the Bose part of the 
J matrix jk~ practically coincides with the corresponding spin matrix of 
ref. 11, we shall use the same regularization, 

(21) _ ~_~,/,T~ + , / ,u ~2 ,/,~T + (~T0~,o+)p 
4~'-t 'p " t -p- -  11 "t-p 

= + + 1) 

where the quantities @, ~p are defined by the relations 

p/~ 
4'~ - O ( ~ p ) ,  ~ =- ~(~,,), ~ = - - [ ,  ~ = -s L ~ oo (22) 

Here l < ~ p < ~ L  and p, L are integers. The De t [ J  kt] can be easily 
calculated: 

Det [ - j k l ]  = lim - ~ 0 ~ = const .exp - ~ 0z dr (23) 
p = l  

For the computation of De t [Y  b] let us perform the regularization n~ 
in the following way: 

~~ lt'l'~~ ,I,~~ ~ A ~ ( ( l + k )  ~o rcp t~'p - ' r p  1 , -  ~p l - k @  ~ 

2 T ~ T ~  + 0 p % ]  
(24) 

The crossing terms j~o, j o0 give small contributions at A ~ 0 in Det (jab) 
and can be omitted. Thus 

Det(J  ab) = Det \8~Uo] Det \~kso j (25) 
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and taking into account (16) and (17), we get 

0 / 
A-1 -A~( I+k )  A- I+A~k  0 ... 

0 0 ... 
�9 . . . .  

0 . . . .  A ' - A p ( l + k )  A-I+A~k / 
~aO 

= ~0~o (26) 

where Ap is defined in (24) and 

) Detl_~J=lim (A-1.--~-k~;)--~ - ~ (A-I-t.-(1 -I-k) A;)  
1 p~l  

(27) 

The Det[(J ab) 1] is not equal to zero on the surface of integration and 
one can conclude that the initial and boundary conditions (16) and (17) 
are correct. The regularization constant k can be determined if we compare 
our result with the case of small filling (see below) where all results can be 
obtained in the gas approximation: k=0.  The computation of the trace 
A(z) can be easily performed. The general trace can be split into the 
product of the single-sites traces, and taking into account initial and 
boundary conditions (16) and (17), we get 

TF (Texp {f~ [n~(~)X~+n~ 

= 1 + exp[q)V(fl)] + [1 + ~ot~(fl) @r(fl)] exp[qr 

= 1 +exp {f~ [t}N(v) + �89 dz} 

+ exp {~[ [t}N(')-- �89 dz} 

+ exp {f/ [~lN(T)--�89 

where t}N(z) = 0N(v) --/~ and ~z(z) = Oz(z) + Wo. 
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In conclusion of this part of this paper, we shall get an explicit form 
of the generating functional in the case of small filling when the J and V 
contributions are absent and the Hubbard-Stratanovich transformation is 
produced for the t member only. In that case we have the expression for 
the generating functional 

= Lm. Lm. Tr Texp +rc~ dz 
tl, -c 

x explf~(t2mlrC~176176176 I (29) 

Let us set ~T;, ~+r, 7rz, ~U equal to zero in (13) and (14) and perform the 
corresponding functional change of variables. Equation (13) can be con- 
sidered in that case as the definition of ~b T*, ~p+*, 0 z, 0 N. Supposing I#l ~> T, 
Wo and p <0,  we get that in this limit the trace (28) becomes unity. From 
(20), (23), and (27) it follows that for k = 0 and fi# ~ -oo ,  the Berezinian 
equal to Det[(Jab) -1] becomes constant. Substituting in (29) the expres- 
sion for ~ in (13) and making the linear change of the integration variables 

~o~_~ tom 0 ~ ,  (30) 

we get the following representation for the generating functional: 

z(h) f H = D~.~ D~O(~:) e x p ( - - r )  
n, T 

F ~  - ~ r "l a O .  Oa t a O ~ O a  - -  aO ~ 0  Off Oa L~,. ~,. - m ~ , ~  ~,. + t,,..~,o ( 1 - 0 .  ~ .  )~'m (31) 
d 

0 

0~ o~ ~o o01 0]00o~)] + h , , O .  + h . ~ . (  - dT 

This generating functional leads to an effective Hamiltonian that coincides 
with the Hamiltonian obtained ~6) by the operator method. The mass renor- 
malization, damping, and electron scattering amplitudes that follow from 
the generating functional (31) coincide with results of the gas approxima- 
tion obtained from the initial Hubbard Hamiltonian. (~6) Such a coincidence 
of the results may be obtained only for the regularization we have used and 
this in fact fixes it. 

3. THE FILLING CLOSE TO UNITY A N D  REDUCTION TO THE 
SPIN PARTIT ION FUNCTION 

Here we consider the case p > 0, p ~> T, Wo, and fl#---, oo. One can 
verify that D e t [ J  ab] ~ e x p ( - p )  and 

Det[Jk~] I f  ~ ~ ~ 1 7 6 1 7 6  l Ber [J ]  Det[Jab] = const-exp -- (2~p N+ 10z-- a'r (32) 

822/'69/1-2-16 
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Substituting (32) into (20), and (20) and (28) into (6) at tip--* o% one 
can verify that the integral over 0 N is Gaussian and thus it can be easily 
performed. As a result, we get the following functional integral over the 
seven field on the lattice 

( ] Z(h)=3[IDO~(r`)exp(--Fy--F.)~~~ l + e x p  -- 0,~(r`)& 
n , T  

x {1 + tk**(fi)(f: Or+(z)exp I f :  ,z(~) d~])})  (33, 

where d=  (00, 00, 1"$, ~T, z), and 

f ( ~ b a O t - l l b O ~  ~ a o -  1 ~ o r  

1 d~aOdtOcr ldtaOd~O%h#O t ldtO~ 
- -  2 w n 't" n - -2" t 'n  "t" n "t" n ~ nm "t" m 

1 o'0 - - 1  Off l t c ~ O  t O c ~  6 0 ~ -  - I t  OtY 

1 1 --  1 a O  O a  --  1 #O ~ O#  gJ~(Jk.tgl Ok Ot~l ) ( Jpmlpq  ~lp ~ O q  ) 
(34) 

_ l t ~ l l  V t-ldt~Od~O%h~O)lt06) -1  o -00a  
- - n m ' r n k W n  W l  W m W k  - I -  VotnmO n O,n)dr  , 

f ~  i[icrO i/lO~r 1 - l ~ a O  ~ O a ~  F , =  1 j . l ( l l , , + g . + ~ .  O ~ n  I - ~ J k n l k l  Ill k 15111 l ) 

- -  ~ ( ~ 0  ~ ~ O~ -- i ~0 ~ O~ 
x ( q m + g ~ + q ~ m O q 4 , ,  - - � 8 9  Op { ~ q  )dr ,  

where g=(hx, hy, h~+wo), Vo=7~ V.m, and the vector q has the 
following form: 

~ff = ~/t; + r/*T, r/y = i(r/T* _ rl*T) 

t/" = rd - OT~ ~ + O*~ ~ (35) 

, z t  = ~+T _ 0 * 0 0 %  n H =  ~r+ _ q,~oOo+ 

For simplicity we omit fermion external fields h ~~ h~ In the next step we 
shall distinguish the integral over the spin variables 

Z(h)= f I ]  DO~ DO:~ exp( -FT) I I  ] D0 .++(,) 
n,z t n,z 

X (I  + ~9+t(fl){ff r exp I f :  O'('?> d'?J d'c})]} (36) 
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It follows from formula (36) that the expression in curly brackets coincides 
explicitly with the generating functional of the Heisenberg model. ~12) The 
external field with respect to the spin operators is 

B,,(.r)=h,,( .c)-- ,~o -o,; l ,-1,/,,~o ,/,o,~ (37) -t- qln ff~n -- 5Jkn'kl W k ffV" l 

and the generating functional can be rewritten in the form 

Z(h)  = f H D~~ D~~ e x p ( - F f )  
n,  T 

• T r ( T e x p { [ - f l H r  S . ( ~ : ) d z ] } ) s  (38) 

where the trace is taken over spin variables and 

1 Hex = 3 [ J,,,,S,,Sm (39) 
t / , m  

is the usual Hamiltonian for quantum antiferromagnets (spin 1/2). The 
substitution (30) for the Grassmann fields reduces the generating functional 
(38) to the standard functional integral ~53 with the Hamiltonian explicitly 
coinciding with the Hamiltonian (3). 

Let us remark that in the general case of an arbitrary chemical poten- 
tial the separation of the spin subsystem is not possible. Moreover, the 
universal polynomial substitution of the spin operators in terms of Bose 
and Fermi operators does not follow from the method of this paper. We 
think that further investigation of the Hamiltonian (3) must be based on 
the variational method ~1~ for the spin subsystem. 

4. P H Y S I C A L  I N T E R P R E T A T I O N  O F  E F F E C T I V E  
H A M I L T O N I A N  

First we recall the physical interpretation of the well-known non- 
Hermitian Dyson-Maleev representation, (17' 18) which follows from (4) if we 
put ~b---s. One can compare that representation with the Hermitian 
Holstein-Primakoff (19) representation for spin operators, 

S~e = P(a + a ) ( 2 s -  a + a )  1/2 aP(a + a) 

S~p = P(a + a) a + ( 2 s -  a +a) m e (a  + a) (40) 

s z = P ( a + a ) ( - s + a + a )  P(a+a)  
H P  

here a + and a are creation and annihilation Bose operators, and P(a+a)  
is the projector operator on the lower 2s+ 1 states: 10), I1 ),..., t2s5. The 
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representation (40) is a direct operator identity which maps the algebra of 
the spin operators s into the Heisenberg algebra of the creation and 
annihilation operators a + and a. 

One can check that there exists an operator V(a+a) with the property 

Snv = PV-  ~SDM VP (41) 

where shy and soM are the Holstein-Primakoff, (40), and Dyson-Maleev, 
(4), spin operators, respectively. The identity (41) means that matrix 
elements of both parts of Eq. (4.2) between any states (nl and In') are 
equal to each other. If n, n ' >  2s, these matrix elements are equal to zero. 
The explicit form of the matrix elements V is 

(n'l Vln)=~n, ,n  ~ ( 2 s + l - m )  m, n,n'<~2s (42) 
m - - 0  

If we want to calculate the partition function 

Z = T r  (exp[-t~H(s)])=Tr(Pexp[-~n(sHv)]) (43) 

we can use the identity (41) and the commutation of the operators V and 
P. As a result, we have for Z, 

Z = Tr(P exp [ -/~H(SBM) ] ) (44) 

The relation (44) is valid because the action of sDr~ on the state In) for 
n = 0, 1,..., 2s leads only to the same states, i.e., the lower 2s + 1 states form 
an invariant subspace with respect to Dyson-Maleev spin operators SDM. 

If we are interested in the properties of the partition function (43) at 
low temperatures in the ferromagnetic or antiferromagnetic state, we can 
omit the projector P in formula (44) because the contribution to the higher 
states In) with n>2s to the trace (44) is exponentially small over the 
parameter flJ, where J is an exchange integral. ~2~ This discussion explains 
the correctness of using the Dyson-Maleev representation for the descrip- 
tion of low-energy processes at low temperatures in ferromagnetics and 
antiferromagnetics. 

A similar interpretation can be given for the representation (2) for the 
Hubbard operators X ab. Let us consider the Gilbert space on every lattice 
site representing the direct product of a Gilbert space of a spin 1/2 and a 
fermion with a spin 1/2. The total number of states in that spin-hole 
Gilbert space is equal to eight: [0, a ) ,  I1, a', a ) ,  12, a ) ;  here the first index 
represents the number of fermions, and a, a ' =  T, + are spin projections. 
One can introduce the Fermi operators h +, ha, 

Ii, a ' ,a)=h~ + 10, a ) ,  IO, a)=h~,[ i ,a ' ,a)  (45) 
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The singlet and triplet states can be formed from one-fermion states: 

Is) = ( l /x/2)  (I1T, + } -  115, T )), l t l ) - - i l T ,  T} 
(46) 

It0) = (1/x/-2)) l 1T, +) + [ 15, I")), I t -  1}--LI+, J,} 

We can map the initial Gilbert space of the Hubbard model without 
two-fermion states into the spin-hole Gilbert space: 

10)h~  Is), I1, 0.)h ~ [0, o'} (47) 

and obtain the following representation of the Hubbard operators X "b in 
terms of the holes h~ +, h~ and the spin-l/2 operators s: 

X ~ = (1/2 x/2)[h +(1 - 20.s)3~, (1 - N) ro.o 

X ~~ = - (1 /2  xf2) %~,(1 - N)~, [(1 - 20.s)h] 

Nh = X tT + X ++ = 1 -  N + D (48) 

X ~176 = ( I / 4 ) [ N -  2D - 2(h +gh)s] 

S = s ( 1 - - N + D )  

Here 

N = ( h  +h), D = h ~ - h T h ( h  ~ 

This representation is the direct operator identity: (1) the matrix elements, 
X ab operators (48), between physical states Is), 100.) are the same as for 
the initial Hubbard operators X~b; (2)the matrix elements between the 
unphysical states [ tm},  120.-) are equal to zero; (3)the matrix elements 
between the physical states is), 10o} and the unphysical states Itrn), [20-) 
are equal to zero. The representation (48) for X ab certainly is Hermitian 
and does not require any constraints. If we compare the representation (48) 
with the initial expression of the Hubbard operators X ab in terms of the 
physical Fermi operators of electrons, we see that the number of electrons 
is close to unity, while the number of Fermi holes is small at a filling close 
to unity. The empty space without electrons can be imagined as the bound 
state of the Fermi hole and the spin 1/2 with the total spin equal to zero. 

What is the connection between the non-Hermitian representation (2) 
and the Hermitian (48) for the Hubbard operators? One can check that if 
we perform a canonical transformation of the hole Fermi operators in (2), 
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h ~ , , ~ h ~ ,  h~ + --+ ( 1 / X )  h~ +, then the matrix elements of the Hubbard 
operators in the representations (2) and (48) are the same between the 
physical states Is), 10o-). Moreover, the action of the Hubbard operators 
in the form (2) on the physical states Is), 10o-) does not lead to the 
unphysical states ]tin), 12o), i.e., the physical states form an invariant sub- 
space over the algebra (2). The relation between the Hubbard operators 
X ~  of (48) and X~H of (2) can be represented in a form similar to (41): 

ab -- 1 y a b  V P  
X H = P V  ~ ' N H  " =  ( 5 0 )  

Here V is the generator of the canonical transformation determined in the 
physical subspace 

Vss=x/2, V,~,~,=6,~,,~,, V,,o = V~,~ = 0 (51) 

and P is the projector on the physical subspace 

P = (1/4)(2 - N)[2  - N -  2N(h +oh)s]  (52) 

Naturally the operators P and V commute. The partition function of the 
Hubbard model can be represented a form similar to (43), 

Z = Tr (P  exp[ - flH(X~b)] ) (53) 

and it can be transformed into a form similar to (44), 

Z = Tr(P  exp [ - ~H(X~, )]  ) (54) 

As the energies of the two-hole states and triplet states are essentially 
higher in the framework of the Hamiltonian (3), we can omit the projector 
P in (53) at low temperatures and work with the Hamiltonian (3). This 
approximation is valid for a small number of holes insofar as the energy of 
the two-hole states at the lattice site and the triplet state are situated 
approximately at the center of the singlet hole bands. 
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